Warm Frontal Snowband Evolution and Microphysical Validation During GPM Cold Season Precipitation Experiment (GCPEx)

Brian A. Colle¹, Aaron Naeger², and Andrew Molthan³

1.School of Marine and Atmospheric Sciences, Stony Brook University
2. University of Alabama at Huntsville

3. NASA Marshall Space Flight Center, Huntsville, AL

Motivation

 Increasing evidence that bulk microphysical schemes in mesoscale models underpredict riming within winter storms.

Simulations of 9
winter storms over
Long Island, NY
highlights
underprediction of
snow fallspeeds
during moderate
riming conditions as
compared to MRR
measurements.

Molthan et al. (MWR 2016)

Some Questions

- What processes led to the rapid intensification and microphysical changes of the warm frontal precipitation band (Colle et al. MWR 2016)?
- How well can current, more advanced BMPs (i.e, P3, Goddard 4ICE, SBU, and Morrison) predict the warm frontal band development and riming intensity for this event?
- How do cloud microphysical processes modify the environmental conditions and the subsequent warm frontal band development?

Warm Frontal Band During GCPEx

18 February 2012: King City Radar Animation 1200 UTC NWS Surface Analysis

Weather Research and Forecasting Simulations

NASA-Unified-WRF configuration

Forcing and Stability for Frontal Band (1130 UTC)

King City Dual Pol (ZDR) Obs of Frontal Band

Ice Microphysics for North (top) v. South (bottom) Part of Band

WRF Microphysical Schemes

Scheme / Acronym	Moments	Notes	Selected References	
Predicted Particle Properties / P3	2	Single ice-phase category evolves freely in time and space; lookup table for N_{os} , λ_s based on mass and number concentration	Morrison et al. (2015a) Morrison et al. (2015b)	
Morrison / MORR	2	Explicit prediction of number concentration and mass for each species	Morrison et al. (2009)	
Goddard 4ICE / 4ICE	1	Snow mapping routine for $N_{os}(T,q_s)$ and $N_{og}(T,q_g)$	Lang et al. (2014)	
Stony Brook / SBU	1	$N_{os}(T)$ by Houze et al. (1979); M-D and V-D functions of diagnosed riming factor Ri, T	Lin and Colle (2011) Lin et al. (2011)	

Scheme	N_{os} (m ⁻⁴)	μ_s	$\rho_s (\text{kg m}^{-3})$	a_m (kg m ^{-bm})	b_m	$a_v(\mathrm{m}^{1-bv}\mathrm{s}^{-1})$	b_v
Р3	$f(q_s, M_{0s})$	lookup table	predicted	$\frac{\pi}{6} \ ho_S$	3	f(R _e , X)	$f(R_e, X)$
MORR	$f(M_{\partial s_s} \lambda_s)$	0	100 / 400	$rac{\pi}{6} ho_{\mathcal{S}}$	2	11.72 / 19.3	0.41 / 0.37
4ICE	$f(T, q_s)$	O	50 / 300, 500	$\frac{\pi}{6} \rho_S$	3	151.01 / 330.22, 544.83	0.24 / 0.36, 0.54
SBU	f(T)	0	f(D)	$f(T, R_i)$	$f(T, R_i)$	$f(T, R_i)$	$f(T, R_i)$

WRF Microphysical

20120218 1100

sbu

45.5°N 20120218 1100

Importance of riming, MORR accretion threshold, less sensi to ice density

Impact of
Using
Saturation
Adjustment
Scheme in P3
Scheme:

More convective plumes near band, less organized frontal band, less cloud water upstream (more evaporation)

P3_MORRpcc has more low-

Temperatures P3

Conclusions

- Band genesis occurred with frontogenesis in the presence of weak potential and conditional instability feeding into the region.
- There was significant amounts of cloud water and riming within the rising (southern) branch of the frontal circulation.
- There was relatively large sensitivity to the snowband structure/intensity to the more sophisticated bulk microphysical schemes.
- Most of the differences are related to the way the schemes partition snow and graupel. The new P3 scheme with continuous dry ice/snow to rime/graupel was most realistic. OLYMPEX results are also promising (see our Naeger et al. poster #108).
- There are other micro feedbacks: More evap w/ the sat adjustment helps destabilize and broadens convective cell response around the front; more precip cells also leads to more melt/cooling on immediate

Supplement Slides

